
Table of Contents
Lustre on Pleiades...............................................................................................................1

Lustre Basics...............................................................................................................1
Pleiades Lustre Filesystems........................................................................................4
Lustre Best Practices...................................................................................................7
Lustre Filesystem Statistics in PBS Output File.........................................................12



Lustre on Pleiades

Lustre Basics

DRAFT

This article is being reviewed for completeness and technical accuracy.

A Lustre filesystem is a high-performance, shared filesystem (managed with the Lustre
software) for Linux clusters. It is highly scalable and can support many thousands of client
nodes, petabytes of storage and hundreds of gigabytes per second of I/O throughput.

Main Lustre components:

Metadata Server (MDS)

1 or 2 per filesystem; service nodes that manage all metadata operations such as
assigning and tracking the names and storage locations of directories and files on
the OSTs.

• 

Metadata Target (MDT)

1 per filesystem; a storage device where the metadata (name, ownership,
permissions and file type) are stored.

• 

Object Storage Server (OSS)

1 or multiple per filesystem; service nodes that run the Lustre software stack, provide
the actual I/O service and network request handling for the OSTs, and coordinate file
locking with the MDS. Each OSS can serve up to ~15 OSTs. The aggregate
bandwidth of a Lustre filesystem can approach the sum of bandwidths provided by
the OSSes.

• 

Object Storage Target (OST)

multiple per filesystem; storage devices where the data in user files are stored.
Under Linux 2.6 (current OS on Pleiades), each OST can be up to 8TB in size.
Under SLES 11, each OST can be up to 16 GB in size. The capacity of a Lustre
filesystem is the sum of the sizes of all OSTs.

• 

Lustre Clients

commonly in the thousands per filesystem; compute nodes that mount the Lustre
filesystem, and access/use data in the filesystem.

• 

Striping

Lustre on Pleiades 1



A user file can be divided into multiple chunks and stored across a subset of the OSTs. The
chunks are distributed among the OSTs in a round-robin fashion to ensure load balancing.

Benefits of striping:

allows one to have a file size larger than the size of an OST• 

allows one or more clients to read/write different parts of the same file at the same
time and provide higher I/O bandwidth to the file since the bandwidth is aggregated
over the multiple OSTs

• 

Drawbacks of striping:

higher risk of file damage due to hardware malfunction• 

increased overhead due to network operations and server contention• 

There are default stripe configurations for each Lustre filesystem. However, users can set
the following stripe parameters for their own directories or files to get optimum I/O
performance:

stripe_size

the size of the chunk in bytes; specify with k, m, or g to use units of KB, MB, or GB,
respectively; the size must be an even multiple of 65,536 bytes; default is 4MB for all
Pleiades Lustre filesystems; one can specify 0 to use the default size.

1. 

stripe_count

the number of OSTs to stripe across; default is 1 for most of Pleiades Lustre
filesystems (/nobackupp[10-60]); one can specify 0 to use the default count; one can
specify -1 to use all OSTs in the filesystem.

2. 

stripe_offset

The index of the OST where the first stripe is to be placed; default is -1 which results
in random selection; using a non-default value is NOT recommended.

3. 

Use the command for setting the stripe parameters:

pfe1% lfs setstripe -s stripe_size -c stripe_count -o stripe_offset
dir|filename

For example, to create a directory called dir1 with a stripe_size of 4MB and a stripe_count
of 8, do

pfe1% mkdir dir1

Lustre Basics 2



pfe1% lfs setstripe -s 4m -c 8 dir1

Also keep in mind that:

When a file or directory is created, it will inherit the parent directory's stripe settings.• 

The stripe settings of an existing file can not be changed. If you want to change the
settings of a file, you can create a new file with the desired settings and copy the
existing file to the newly created file.

• 

Useful Commands for Lustre

To list all the OSTs for the filesystem

pfe1% lfs osts

• 

To list space usage per OST and MDT in human readable format for all Lustre
filesystems or for a specific one, for example, /nobackupp10:
pfe1% lfs df -h
pfe1% lfs df -h /nobackupp10

• 

To list inode usage for all filesystems or a specific one, for example, /nobackupp10:
pfe1% df -i
pfe1% df -i /nobackupp10

• 

To create a new (empty) file or set directory default with specified stripe parameters

pfe1% lfs setstripe -s stripe_size -c stripe_count -o
stripe_offset dir|filename

• 

To list the striping information for a given file or directory

pfe1% lfs getstripe dir|filename

• 

To display disk usage and limits on your /nobackup directory (for example,
/nobackupp10):

pfe1% lfs quota -u username /nobackupp10

or

pfe1% lfs quota -u username /nobackup/username

To display usage on each OST, add the -v option:

pfe1% lfs quota -v -u username /nobackup/username

• 

Lustre Basics 3



Pleiades Lustre Filesystems

Pleiades has several Lustre filesystems (/nobackupp[10-60]) that provide a total of about 3
PB of storage and serve thousands of cores. These filesystems are managed under Lustre
software version 1.8.2.

Lustre filesystem configurations are summarized at the end of this article.

Which /nobackup should I use?

Once you are granted an account on Pleiades, you will be assigned to use one of the
Lustre filesystems.  You can find out which Lustre filesystem you have been assigned to by
doing the following:

pfe1% ls -l /nobackup/your_username
lrwxrwxrwx 1 root root 19 Feb 23  2010 /nobackup/username -> /nobackupp30/username

In the above example, the user is assigned to /nobackupp30 and a symlink is created to
point the user's default /nobackup to /nobackupp30.

TIP: Each Pleiades Lustre filesystem is shared among many users. To get good I/O
performance for your applications and avoid impeding I/O operations of other users, read
the articles:   Lustre Basics and  Lustre Best Practices.

Default Quota and Policy on /nobackup

Disk space and inodes quotas are enforced on the /nobackup filesystems. The default soft
and hard limits for inodes are 75,000 and 100,000, respectively. Those for the disk space
are 200GB and 400GB, respectively. To check your disk space and inodes usage and
quota on your /nobackup, use the lfs command and type the following:

%lfs quota -u username /nobackup/username
Disk quotas for user username (uid xxxx):
   Filesystem  kbytes       quota   limit   grace   files   quota   limit   grace
/nobackup/username 1234  210000000 420000000    -     567   75000  100000       -

The NAS quota policy states that if you exceed the soft quota, an email will be sent to
inform you of your current usage and how much of your grace period remains. It is
expected that users will occasionally exceed their soft limit, as needed; however after 14
days, users who are still over their soft limit will have their batch queue access to Pleiades
disabled.

If you anticipate having a long-term need for higher quota limits, please send a justification
via email to support@nas.nasa.gov. This will be reviewed by the HECC Deputy Project
Manager for approval.

Pleiades Lustre Filesystems 4

mailto:support@nas.nasa.gov


For more information, see also, Quota Policy on Disk Space and Files.

NOTE: If you reach the hard limit while your job is running, the job will die prematurely
without providing useful messages in the PBS output/error files. A Lustre error with code
-122 in the system log file indicates that you are over your quota.

In addition, when a Lustre filesystem is full, jobs writing to it will hang. A Lustre error with
code -28 in the system log file indicates that the filesystem is full. The NAS Control Room
staff normally will send out emails to the top users of a filesystem asking them to clean up
their files.

Important: Backup Policy

As the names suggest, these filesystems are not backed up, so any files that are removed
cannot be restored. Essential data should be stored on Lou1-3 or onto other more
permanent storage.

 Configurations

In the table below, /nobackupp[10-60] have been abbreviated as p[10-60].

Pleiades Lustre Configurations
Filesystem p10 p20 p30 p40 p50 p60
# of MDSes 1 1 1 1 1 1
# of MDTs 1 1 1 1 1 1
size of MDTs 1.1T 1.0T 1.2T 0.6T 0.6T 0.6T
# of usable inodes on
MDTs ~235x10^6 ~115x10^6 ~110x10^6 ~57x10^6 ~113x10^6 ~123x10^6

# of OSSes 8 8 8 8 8 8
# of OSTs 120 60 120 60 60 60
size/OST 7.2T 7.2T 3.5T 3.5T 7.2T 7.2T
Total Space 862T 431T 422T 213T 431T 431T
Default Stripe Size 4M 4M 4M 4M 4M 4M
Default Stripe Count 1 1 1 1 1 1

NOTE: The default stripe count and stripe size were changed on January 13, 2011. For
directories created prior to this change, if you did not explictly set the stripe count and/or
stripe size, the default values (stripe count 4 and stripe size 1MB) were used. This means
that files created prior to January 13, 2011 had those old default values. After this date,
directories without an explicit setting of stripe count and/or stripe size adopted the new
stripe count of 1 and stripe size of 4MB. However, the old files in that directory will retain
their old default values. New files that you create in these directories will adopt the new

Pleiades Lustre Filesystems 5



default values.

Pleiades Lustre Filesystems 6



Lustre Best Practices

Lustre filesystems are shared among many users and many application processes, which
causes contention for various Lustre resources. This article explains how Lustre I/O works,
and provides best practices fro improving application performance.

 How does Lustre I/O work?

When a client (a compute node from your job) needs to create or access a file, the client
queries the metadata server (MDS) and the metadata target (MDT) for the layout and
location of the file's stripes. Once the file is opened and the client obtains the striping
information, the MDS is no longer involved in the file I/O process. The client interacts
directly with the object storage servers (OSSes) and object storage targets (OSTs) to
perform the I/O operations such as locking, disk allocation, storage, and retrieval.

If multiple clients try to read and write the same part of a file at the same time, the Lustre
distributed lock manager enforces coherency so that all clients see consistent results.

Jobs being run on Pleiades content for shared resources in NAS's Lustre filesystem. The
Lustre server can only handle about 15,000 remote procedure calls (RPCs, inter-process
communications that allow the client to cause a procedure to be executed on the server)
per second. Contention slows the performance of your applications and weakens the
overall health of the Lustre filesystem. To reduce contention and improve performance,
please apply the examples below to your compute jobs, while working in our high-end
computing environment.

 Best Practices

Avoid using ls -l

The ls -l command displays information such as ownership, permission and size of
all files and directories. The information on ownership and permission metadata is
stored on the MDTs. However, the file size metadata is only available from the
OSTs. So, the ls -l command issues RPCs to the MDS/MDT and OSSes/OSTs for
every file/directory to be listed. RPC requests to the OSSes/OSTs are very costly
and can take a long time to complete for many files and directories.

- Use ls by itself if you just want to see if a file exists.

- Use ls -l filename if you want the long listing of a specific file.

• 

Avoid having a large number of files in a single directory• 

Lustre Best Practices 7



Opening a file keeps a lock on the parent directory. When many files in the same
directory are to be opened, it creates contention. It is better to split a huge number of
files (in the thousands or more) into multiple sub-directories to minimize contention.

Avoid accessing small files on Lustre filesystems

Accessing small files on the Lustre filesystem is not efficient. If possible, keep them
on an NFS-mounted filesystem (such as your home filesystem) or copy them from
Lustre to /tmp on each node at the beginning of the job and access them from there.

• 

Use a stripe count of 1 for directories with many small files

If you have to keep small files on Lustre, be aware that stat operations are more
efficient if each small file resides in one OST. Create a directory to keep small files,
set the stripe count to 1 so that only one OST will be needed for each file. This is
useful when you extract source and header files (which are usually very small files)
from a tarfile.

pfe1% mkdir dir_name
pfe1% lfs setstripe -s 1m -c 1 dir_name
pfe1% cd dir_name
pfe1% tar -xf tarfile

If there are large files in the same directory tree, it may be better to allow them to
stripe across more than one OST. You can create a new directory with a larger stripe
count and copy the larger file to that directory. Note that moving files into that
directory with the mv command will not change the strip count of the files. Files must
be created in or copied to a directory to inherit the stripe count properties of a
directory.

pfe1% mkdir dir_count_4
pfe1% lfs setstripe -s 1m -c 4 dir_count_4
pfe1% cp file_count_1 dir_count_4

If you have a directory with many small files (less than 100MB) and a few very large
files (greater than 1GB), then it may be better to create a new subdirectory with a
larger stripe count. Store just the large files and create symbolic links to the large
files using the symlink command.

pfe1%  mkdir bigstripe
pfe1%  lfs setstripe -c 16 -s 4m bigstripe
pfe1%  ln -s bigstripe/large_file  large_file

• 

Use mtar for creating or extracting a tar file

A modified gnu tar command, /usr/local/bin/mtar, is Lustre stripe aware and will
create tar files or extract files with appropriately sized stripe counts. Currently, the
number of streps is set to the number of gigabytes of the file.

• 

Lustre Best Practices 8



Keep copies of your source on the Pleiades home filesystem and/or Lou

Be aware that files under /nobackup[p1,p2,p10-p60] are not backed up. Make sure
that you have copies of your source codes, makefiles, and any other important files
saved on your Pleiades home filesystem or on Lou, the NAS storage system.

• 

Avoid accessing executables on Lustre filesystems

There have been a few incidents on Pleiades where users' jobs encountered
problems while accessing their executables on /nobackup. The main issue is that the
Lustre clients can become unmounted temporarily when there is a very high load on
the Lustre filesystem. This can cause a bus error when a job tries to bring the next
set of instructions from the inaccessible executable into memory.

Executables run slower when run from the Lustre filesystem. It is best to run
executables from your home filesystem on Pleiades. On rare occasions, running
executables from the Lustre filesystem can cause executables to be corrupted. Avoid
copying new executable over existing executables of the same within the Lustre
filesystem. The copy causes a window of time (about 20 minutes) where the
executable will not function. Instead, the executable should be accessed from your
home filesystem during runtime.

• 

Increase the stripe_count for parallel writes to the same file

When multiple processes are writing blocks of data to the same file in parallel, I/O
performance is better for large files when the stripe_count is set to a larger value.
The stripe count sets the number of OSTs the file will be written to. By default, the
stripe count is set to 1. While this default setting provides for efficient access of
metadata�for example to support "ls -l"&emdash;large files should use stripe counts
of greater than 1. This will increase the aggregate I/O bandwidth by using multiple
OSTs in parallel instead of just one. A rule of thumb is to use a stripe count
approximately equal to the number of gigabytes in the file.

It is also better to make the stripe count be an integral factor of the number of
processes performing the write in parallel so that one achieves load balance among
the OSTs. For example, set the stripe count to 16 instead of 15 when you have 64
processes performing the writes.

• 

Limit the number of processes performing parallel I/O

Given that the numbers of OSSes and OSTs on Pleiades are about a hundred or
fewer, there will be contention if a huge number of processes of an application are
involved in parallel I/O. Instead of allowing all processes to do the I/O, choose just a
few processes to do the work. For writes, these few processes should collect the

• 

Lustre Best Practices 9



data from other processes before the writes. For reads, these few processes should
read the data and then broadcast the data to others.
Stripe align I/O requests to minimize contention

Stripe aligning means that the processes access files at offsets that correspond to
stripe boundaries. This helps to minimize the number of OSTs a process must
communicate for each I/O request. It also helps to decrease the probability that
multiple processes accessing the same file communicate with the same OST at the
same time.

One way to stripe-align a file is to make the stripe size the same as the amount of
data in the write operations of the program.

• 

Avoid repetitive stat operations

Some users have implemented logic in their scripts to test for the existence of certain
files. Such tests generate stat requests to the Lustre server. When the testing
becomes excessive, it creates a significant load on the filesystem. A workaround is
to slow down the testing by adding sleep in the logic. For example, the following user
script tests the existence of the files WAIT and STOP to decide what to do next.

touch WAIT
 rm STOP

 while ( 0 <= 1  )
  if(-e WAIT) then
    mpiexec ...
    rm WAIT
  endif
  if(-e STOP) then
    exit
  endif
 end

When neither the WAIT nor STOP file exists, the loop ends up testing for their
existence as fast as possible (on the order of 5000 times per second). Adding a
sleep inside the loop slows down the testing.

touch WAIT
 rm STOP

 while ( 0 <= 1  )
  if(-e WAIT) then
    mpiexec ...
    rm WAIT
  endif
  if(-e STOP) then
    exit
  endif
sleep 15

• 

Lustre Best Practices 10



 end

Avoid multiple processes opening the same file(s) at the same time

On Lustre filesystems, if multiple processes try to open the same file(s), some
processes will not able to find the file(s) and the job will fail.

The source code can be modified to call the sleep function between I/O operations.
This will reduce the occcurence of multiple access attempts to the same file from
different processes simultaneously.

 100  open(unit,file='filename',IOSTAT=ierr)
      if (ierr.ne.0) then
       ...

call sleep(1)
      go to 100
      endif

When opening a read-only file in Fortran, use ACTION='read' instead of the default
ACTION='readwrite'. The former will reduce contention by not locking the file.

open(unit,file='filename',ACTION='READ',IOSTAT=ierr)

• 

Avoid repetitive open/close operations

Opening files and closing files incur overhead and repetitive open/close should be
avoided.

If you intend to open the files for read only, make sure to use ACTION='READ' in the
open statement. If possible, read the files once each and save the results, instead of
reading the files repeatedly.

If you intend to write to a file many times during a run, open the file once at the
beginning of the run. When all writes are done, close the file at the end of the run.

• 

Reporting Problems

If you report performance problems with a Lustre filesystem, please be sure to include the
time, hostname, PBS job number,  name of the filesystem, and the path of the directory or
file that you are trying to access.Your  report will help us correlated issues with recorded
performance data to determine the cause of efficiency problems.

Lustre Best Practices 11



Lustre Filesystem Statistics in PBS Output File

For a PBS job that reads or writes to a Lustre file system, a Lustre filesystem statistics
block will appear in the PBS output file, just above the job's PBS Summary block.
Information provided in the statistics can be helpful in determining the I/O pattern of the job
and assist in identifying possible improvements to your jobs.

The statistics block lists the job's number of Lustre operations and the volume of Lustre I/O
used for each file system. The I/O volume is listed in total, and is broken out by I/O
operation size.

The following Metadata Operations statistics are listed:

open/close of files on the Lustre file system• 
stat/statfs are query operations invoked by commands such as "ls -l"• 
read/write is the total volume of I/O in gigabytes• 

The following is an example of this listing:

==================================================================
LUSTRE Filesystem Statistics
------------------------------------------------------------------
  nbp10 Metadata Operations
       open     close      stat    statfs    read(GB)   write(GB)
       1057      1058      1394         0           2          14
Read   4KB   8KB  16KB  32KB  64KB  128KB  256KB   512KB   1024KB
         9     3     1     0     1      0      3       2      319
Write  4KB   8KB  16KB  32KB  64KB  128KB  256KB   512KB   1024KB
       138    13     1    11    36      9     21      37    12479
__________________________________________________________________
Job Resource Usage Summary for 11111.pbspl1.nas.nasa.gov

    CPU Time Used            : 00:03:56
    Real Memory Used         : 2464kb
    Walltime Used            : 00:04:26
    Exit Status              : 0

The read and write operations are further broken down into buckets based on I/O block
size. In the example above, the first bucket reveals that nine data reads occurred in blocks
between 0 and 4 KB in size, three data reads ocurred with block sizes between 4 KB and 8
KB, and so on. The I/O block size data may be affected by library and system operations
and, therefore, could differ from expected values. That is, small reads or writes by the
program might be aggregated into larger operations, and large reads or writes might be
broken into smaller pieces. If there are high counts in the smaller buckets, you should
investigate the I/O pattern of the program for efficiency improvements.

Tips for Improving Lustre I/O

Lustre Filesystem Statistics in PBS Output File 12



See Lustre Best Practices for multiple tips to improve the Lustre I/O performance of your
jobs.

Lustre Filesystem Statistics in PBS Output File 13


	Table of Contents
	Lustre on Pleiades
	Lustre Basics
	Pleiades Lustre Filesystems
	Lustre Best Practices
	Lustre Filesystem Statistics in PBS Output File


